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Abstract 13 

 14 

The application of simple empirical equations for estimating reference 15 

evapotranspiration (ETo) is the only alternative in many cases to robust approaches 16 

with high input requirements, especially at the local scale. In particular, temperature-17 

based approaches present a high potential applicability, among others, because 18 

temperature might explain a high amount of ETo variability, and also because it can be 19 

measured easily and is one of the most available climatic inputs. One of the most well-20 

known temperature-based approaches, the Hargreaves (HG) equation, requires a 21 

preliminary local calibration that is usually performed through an adjustment of the 22 

HG coefficient (AHC). Nevertheless, these calibrations are site-specific, and cannot be 23 

extrapolated to other locations. So, they become useless in many situations, because 24 

they are derived from already available benchmarks based on more robust methods, 25 
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which will be applied in practice. Therefore, the development of accurate equations for 26 

estimating AHC at local scale becomes a relevant task. This paper analyses the 27 

performance of calibrated and non-calibrated HG equations at 30 stations in Eastern 28 

Spain at daily, weekly, fortnightly and monthly scales. Moreover, multiple linear 29 

regression was applied for estimating AHC based on different inputs, and the resulting 30 

equations yielded higher performance accuracy than the non-calibrated HG estimates. 31 

The approach relying on the ratio mean temperature to temperature range did not 32 

provide suitable AHC estimations, and was highly improved by splitting it into two 33 

independent predictors. Temperature-based equations were improved by incorporating 34 

geographical inputs. Finally, the model relying on temperature and geographic inputs 35 

was further improved by incorporating wind speed, even just with simple qualitative 36 

information about wind category (e.g. poorly vs. highly windy). The accuracy of the 37 

calibrated and non-calibrated HG estimates increased for longer time steps (daily < 38 

weekly < fortnightly < monthly), although with a decreasing accuracy improvement 39 

rate. The variability of goodness-of-fit between AHC models was translated into lower 40 

variability of accuracy between the corresponding HG calibrated ETo estimates, 41 

because a single AHC was applied per station. The AHC fluctuations throughout the 42 

year suggest the convenience of using monthly or, at least, seasonal models. 43 
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1. Introduction  53 

 54 

Sophisticated irrigation water management will be required to optimize water use 55 

efficiency and maintain sufficient levels of crop productivity and quality (Ortega-Farias 56 

et al., 2009), as well as to mitigate water overutilization and environmental degradation. 57 

In order to achieve these targets, accurate assessment of evapotranspiration (ET) can be 58 

a viable tool to improve the design and management of irrigation programs. ET is a 59 

crucial parameter of the hydrological cycle in agriculture, particularly in irrigated 60 

systems. Jensen (1968) introduced the conceptual and widely-extended approach to 61 

estimate ET as the product of reference evapotranspiration (ETo), i.e. ET from a 62 

reference surface, and a crop coefficient that accounts for management practices, crop 63 

type and development. 64 

The Food and Agriculture Organization (FAO) version of the Penman Monteith 65 

equation (Allen et al., 1998), FAO56-PM, has shown in general accurate and sound 66 

performance for estimating ETo in arid and humid climates, and was therefore 67 

recommended as the sole standard method for calculating ETo and validating other 68 

equations. However, its application is not possible in many situations, because it relies 69 

heavily on weather data that are often not available or reliable, especially in developing 70 

countries, where such data are scarce and sparse.  71 

Estimating ETo with empirical methods is commonly required at the local scale for 72 

water resources and irrigation management and planning, because it is not possible to 73 

obtain experimental measurements or apply more accurate and robust methods. The 74 

application of the FAO56-PM equation by adopting estimated instead of measured 75 



values for some variables could lead to errors as shown e.g. by Jabloun and Sahli (2008) 76 

and Kwon and Choi (2011). The study and development of temperature-based methods 77 

for ETo estimation is justified for several reasons. First, temperature and solar radiation 78 

explain at least 80% of ETo variability (Priestley and Taylor, 1972; Samani, 2000). 79 

Second, several studies indicate that daily temperature range can be related to relative 80 

humidity and cloudiness (Samani and Pessarakli, 1986; Shuttleworth, 1993; Di Stefano 81 

and Ferro, 1997). Third, advection depends on the interaction between temperature, 82 

relative humidity, vapor pressure, and wind speed, and these variables can be related to 83 

the temperature range (Vanderlinden et al., 2004). Finally, temperature is the most wide-84 

spread monitored variable among those needed for ETo estimation (Mendicino and 85 

Senatore, 2013). 86 

The well-known Hargreaves (HG) equation (Hargreaves and Samani, 1985) only 87 

requires measured mean air temperature and temperature range, in addition to calculated 88 

extraterrestrial radiation. Jensen et al. (1997) recommended the HG equation as one of 89 

the most simple and accurate empirical methods. According to Allen et al. (1998), the 90 

HG equation provides reasonable ETo estimates with a global validity. Recently, Raziei 91 

and Pereira (2013) reported no significant differences in the performance of the HG and 92 

the temperature-based FAO56 PM equations in Iran. Although accurate daily estimates 93 

have been reported with this equation (Di Stefano and Ferro, 1997), Hargreaves and 94 

Allen (2003) stated that the best HG estimates might be expected for five-day or longer 95 

periods, because daily estimations are subject to higher variability caused by the 96 

movement of weather fronts and by large variations in wind speed and cloud cover. 97 

Shuttleworth (1993) even recommended not to use shorter periods than one month. 98 

Nevertheless, numerous agricultural and hydrological applications require daily ETo 99 

data.  100 



According to Maestre-Valero et al. (2013), the performance of the original HG equation 101 

is strongly influenced by the climatic conditions where it was developed. Several 102 

researchers have found over- and underestimation trends in humid and dry scenarios, or 103 

under advective conditions (among others, Jensen et al., 1990; Itenfisu et al., 2003; 104 

Berengena and Gavilán, 2005; Temesgen et al., 2005; Trajkovic, 2007). Other studies 105 

found a tendency to overestimate it at low evapotranspiration rates and vice versa (e.g. 106 

Droogers and Allen, 2002; Xu and Singh, 2002). According to Samani (2000), the HG 107 

equation should not be extrapolated to different climatic conditions unless it is first 108 

calibrated at the local scale. This calibration might be performed using ETo 109 

measurements (e.g. Jensen et al., 1997; López Urrea et al., 2006) or, more commonly, 110 

Penman Monteith calculated benchmarks (e.g. Itenfisu et al., 2003; Vanderlinden et al., 111 

2004; Trajkovic, 2005, 2007; Gavilán et al., 2006; Fooladmand and Haghighat, 2007; 112 

Ravazzani et al., 2012; Bachour et al., 2013; Mendicino and Senatore, 2013; Berti et al., 113 

2014), considering in most cases an adjusted Hargreaves coefficient (AHC) obtained by 114 

regression-based local calibration.  115 

However, these fitted equations are site-specific and cannot be extrapolated to other sites 116 

where local ETo benchmarks are not available for preliminary calibration. Indeed, in 117 

weather stations where a local calibration is possible, the FAO56-PM equation would be 118 

used in practice, leaving the calibrated HG equation for emergency cases. Accordingly, 119 

in addition to local linear calibration, different authors have tackled the parametric 120 

calibration of the HG coefficient relying on additional parameters, such as temperature 121 

range (Samani, 2000; Mendicino and Senatore, 2013, Maestre-Valero et al., 2013), the 122 

ratio of mean temperature to temperature range (Tmean/ΔT) (Vanderlinden et al., 2004; 123 

Lee, 2010; Thepadia and Martínez, 2012; Mendicino and Senatore, 2013; Maestre-124 

Valero et al., 2013; Berti et al., 2014), wind speed (Jensen et al., 1997; Martínez-Cob 125 



and Tejero-Juste, 2004), relative humidity (Hargreaves and Allen, 2003), rainfall 126 

(Droogers and Allen, 2002), and altitude (Ravazzani et al., 2012). However, considering 127 

a single timescale (commonly the daily or monthly scale) these studies did not provide 128 

clear indications on how to calibrate the HG equation at new locations. Therefore, 129 

Shahidian et al. (2013) performed an in-depth analysis of the seven most promising 130 

additional parameters used for spatial and seasonal calibration of the HG equation by 131 

testing those approaches under climatically uniform and non-uniform conditions. They 132 

concluded that wind speed appeared as the most important parameter for improving HG 133 

estimates in the climatic scenarios under study. By considering wind speed in the HG 134 

equation, in addition to the radiative component, also the aerodynamic component of the 135 

Penman Monteith equation is taken into account. However, wind speed is usually not 136 

available where the HG equation might be useful in practice. Alternative data-driven 137 

approaches like artificial neural networks, neuro-fuzzy models or gene expression 138 

programming, relying on the same inputs as the HG equation, have been proposed in the 139 

last years with promising results (e.g. Zanetti et al., 2007; Martí et al., 2011; Shiri et al., 140 

2013; 2014). Nevertheless, in contrast to the HG equation, the application of such 141 

methods requires the implementation of specific software, and the obtained models can 142 

generally not be expressed in straightforward simple equations. 143 

The current work aims at evaluating several previously proposed parametric calibration 144 

approaches for the AHC in Eastern Spain, relying on daily temperature range (ΔT) and 145 

on the ratio Tmean/ΔT, and considering four different timescales (day, week, fortnight, 146 

and month). The main goal is to improve the performance accuracy of the AHC 147 

parametrizations and, as a result, the subsequent calibrated ETo estimates.  148 

 149 

2. Methods 150 



 151 

2.1. Data set and study area 152 

 153 

Daily measurements of maximum (Tmax), minimum (Tmin) and mean (Tmean) air 154 

temperature at 2 m height (temperature-compact sensor model 110055400 by Thies 155 

Clima), relative humidity (RH) at 2 m height (humidity sensor model 110055400 by 156 

Thies Clima), solar radiation (Rs), obtained with a pyranometer (sensor model CMP3 by 157 

Kipp & Zonen), and wind speed at 2 m height (u2), obtained with an anemometer 158 

(sensor model 4351900000 by Thies clima), were recorded at 30 agro-meteorological 159 

stations located along the Mediterranean coast of Spain (Fig. 1) during the period 2000-160 

2007. All the sensors were connected to a CR1000 Campbell Scientific datalogger. Data 161 

were provided by the Service of Irrigation Technology from the Valencian Institute of 162 

Agricultural Research (http://estaciones.ivia.es). In order to study several timescales, 163 

weekly, fortnightly and monthly means of these parameters were computed. The basic 164 

geographical data of the 30 stations can be found in Martí and Zarzo (2012). A climatic 165 

description of the area under study is provided by Martí and Gasque (2011). 166 

 167 

2.2. Approaches to estimate ETo 168 

 169 

2.2.1. FAO56 Penman Monteith equation 170 

Lysimeters were absent at the weather stations considered in this study. Therefore, the 171 

FAO56-PM equation was applied to provide the target ETo values used to calibrate and 172 

test the other equations. This equation was validated in the nearby Albacete region 173 

against lysimeter measurements, and resulted the most accurate method for calculating 174 

average daily ETo (López Urrea et al., 2006). The FAO56-PM equation is generally 175 
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considered as the sole standard method for computing ETo (Allen et al., 1998). It is 176 

directly derived from the original Penman-Monteith equation for a reference crop 177 

(clipped grass with 0.12 m height) and assuming standard values of surface resistance, 178 

aerodynamic resistance, and albedo, and constant values for air density and for the 179 

latent heat of water vaporization (Mendicino and Senatore, 2013). The daily FAO56-180 

PM ETo (mm/day) was calculated as 181 
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where Rn is the net radiation at the crop surface (MJ/m2day); G is the soil heat flux 183 

density (MJ/m2day); T is the mean daily air temperature at 2m height (ºC); γ is the 184 

psychrometric constant (kPa/ºC); Δ is the slope of vapor pressure curve (kPa/ºC); es is 185 

the saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa); and u2 is the 186 

wind speed at 2 m height (m/s). All variables were calculated in the present work by 187 

applying the equations provided by Allen et al. (1998). G was assumed to be zero for 188 

the daily, weekly and fortnightly calculations, and was calculated for the monthly 189 

timescale as (Allen et al., 1998) 190 

)(07.0 11 −+ −= imonthimonthimonth TTG                                     (2) 191 

where Gmonth i is the soil heat flux in the month i, Tmonth i+1 is the average mean 192 

temperature in the month i+1, while Tmonth i-1 is the average mean temperature in the 193 

month i-1.  194 

 195 

2.2.2. Hargreaves equation 196 

The HG equation for estimating daily reference evapotranspiration (ETo
HG, mm/day) is 197 

according to Hargreaves and Samani (1985)  198 



 199 
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where Ra is the water equivalent of extraterrestrial radiation (mm/day); ∆T is the daily 201 

temperature range (ºC); T is the mean daily air temperature (ºC), AHC is the adjusted 202 

Hargreaves coefficient, equal to 0.0023 in the original HG equation. Eq. [3] was 203 

developed from  204 
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 208 

where Rs is the solar radiation (mm/day), and C is an empirical coefficient (C = 0.17 for 209 

AHC = 0.0023, i.e. 0.0135×0.17). The historical development of the HG equation can 210 

be found in Hargreaves and Allen (2003). Initially, Hargreaves et al. (1985) obtained a 211 

value of 0.0022 for AHC, after calibrating C using data from four stations in the Senegal 212 

river basin in Senegal and Mali, where a value of 0.16 was found. Afterwards, 213 

Hargreaves (1994) obtained AHC=0.0022 for inland regions, and of 0.0026 for coastal 214 

regions. Samani and Pessarakli (1986) obtained C values ranging from 0.119 to 0.212 in 215 

the US. A AHC value of 0.0023 was accepted for general use (Hargreaves, 1994; Allen 216 

et al., 1998). According to Vanderlinden et al. (2004), AHC appears to increase in 217 

coastal areas, where ∆T decreases due to the sea influence, and decreases in 218 

mountainous areas, where air mass movement raises ∆T. Samani (2000) proposed a new 219 

formulation based on the analysis of the annual average of monthly temperature range 220 

and radiation for a period of 25 years across 65 stations in the US:  221 

 222 



4023.00433.000185.0 2 +∆−∆= TTC ,                              (6) 223 

 224 

where ∆T is expressed in ºC. Vanderlinden et al. (2004) proposed the following 225 

expression for AHC based on the analysis of 16 weather stations in Southern Spain for a 226 

period of 38 years  227 

 228 
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 230 

where Tmean and ∆T correspond to average mean temperature and average temperature 231 

range per station (ºC). They proposed k1=0.0005 and k2=0.00159, obtaining a good fit 232 

(R2=0.90). The same expression was recalibrated by Lee (2010) in the Korea peninsula 233 

using data from 21 weather stations during a period of 10 years, obtaining k1=0.0004 234 

and k2=0.0013 (R2=0.84). The same approach was followed by Thepadia and Martínez 235 

(2012) using monthly data from 22 weather stations in Florida during 14 years, 236 

obtaining k1=0.000411 and k2=0.00132 (R2=0.97). Similarly, Mendicino and Senatore 237 

(2013) recalibrated the same expression in Southern Italy using data from 137 stations 238 

and found k1=0.0006 and k2=0.00121 (R2=0.46) considering all stations, and k1=0.0006 239 

and k2=0.00097 (R2=0.83) considering only coastal stations (34). Additionally, they 240 

recalibrated the Samani equation based on a quadratic regression:  241 

 242 

3425 1080226.4109237.31023057.1 −−− ⋅+∆⋅−∆⋅= TTAHC  (R2=0.77)                (8) 243 

 244 

Given that AHC = 0.0135·C, the following expression is equivalent: 245 

 246 



3557.002906.00009115.0 2 +∆−∆= TTC ,                             (9) 247 

 248 

 where ∆T is expressed in ºC. For clarity, hereafter the term “equation” is used to refer 249 

to the specific mathematical expression found by Vanderlinden et al. (2004), with 250 

k1=0.0005 and k2=0.00159, whereas the term ”approach” is used to refer to the same 251 

equation type and inputs, but locally fitted in another study area (i.e., k1 and k2 obtained 252 

by local calibration). The same distinction between “equation” and “approach” is used 253 

for the model of Samani (2000). Multiple linear regression (MLR) was applied to 254 

estimate the AHC and to assess the approaches of Samani (2000) and Vanderlinden et 255 

al. (2004) in the study area. Daily AHCs were obtained by multiplying 0.0023 by the 256 

daily ratio of ETo
PM to ETo

HG. An average AHC value was then obtained per station. 257 

These “observed” AHC data were considered as the target values for the MLR models.  258 

In a second part, MLR was also used to evaluate new input combinations considering 259 

the following parameters as potential input variables: Tmean, Tmin, Tmax, ΔT,  Tmean/ΔT, Ra, 260 

latitude (τ), longitude (φ), altitude (z), distance to the sea (ds), and u2. According to 261 

Mendicino and Senatore (2013), more reliable estimates can be achieved by only taking 262 

into account a subset of the data (e.g. coastal stations). A geographic classification into 263 

climatologically homogeneous zones might help to find optimal subregions, although 264 

such procedure might lead to inconsistent estimates near the boundaries. The use of 265 

geographical inputs might avoid the need for fitting a different model for each 266 

homogeneous zone. Geographic data (elevation) were also used by Ravazzani et al. 267 

(2012) to correct the HG coefficient in western Alpine river basins. Thus, three other 268 

strategies were adopted here aiming at improving the performance of the approaches of 269 

Samani (2000) and Vanderlinden et al. (2004) through different input groupings. First, 270 

different alternative models relying on temperature data were assessed, considering 271 



Tmean and ΔT as independent variables, too. Second, temperature inputs were combined 272 

with geographic inputs, and third, temperature, geographic information and wind speed 273 

were considered jointly. 274 

In a third part, the model performance was also assessed for estimating annual average 275 

cumulative ETo values, which is of interest for average annual water balance modeling. 276 

Due to the presence of data gaps, this analysis was not possible for the individual years. 277 

Hence, an average value in 8 years was calculated for each day, week, fortnight and 278 

month. For some annual time points, less years were used due to the gaps. Weekly, 279 

fortnightly and monthly data were translated into daily values, by assigning the same 280 

average value for each week, fortnight and month, respectively. Finally, a cummulative 281 

value was calculated for each day of the year. 282 

Step-wise regressions were conducted using the software Statgraphics plus 5.1 283 

(StatPoint Technologies Inc., Warrenton, VA, USA). The rest of calculations were 284 

implemented in Matlab. 285 

 286 

2.3. Performance evaluation 287 

 288 

Several error parameters were calculated to assess the performance accuracy of the 289 

obtained predictive models (Willmott, 1982). The relative root mean squared error,  290 

 291 
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and the mean absolute error 294 

 295 
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 298 

were used, being n the total number of used ETo values, xi the target value of ETo 299 

obtained by Eq. [1], ix̂  the estimate, and x  the mean value of the targets. The RRMSE 300 

is unitless, while MAE is in mm/day for ETo, and unitless for AHC. 301 

     302 

3. Results and Discussion 303 

 304 

Existing approaches 305 

 306 

The linear approach proposed by Vanderlinden et al. (2004) based on the ratio Tmean/ΔT 307 

(Eq. 7) has been widely applied in recent years for estimating AHC in different climatic 308 

contexts even without fitting the slope (k1) and intercept (k2) to the local conditions. Fig. 309 

2 represents the observed AHCs vs. the ratio Tmean/ΔT for the 30 stations, as well as the 310 

linear relationships found by Vanderlinden et al. (2004) in Southern Spain, Lee (2010) 311 

in Korea, Thepadia and Martínez (2012) in the US, and Mendicino and Senatore (2013) 312 

in Southern Italy. Despite the relatively similar climatic conditions of some of these 313 

studies, the relationships cannot be extrapolated to other locations and require local 314 

recalibration. Maestre-Valero et al. (2013) assessed the approach of Vanderlinden et al. 315 

(2004) in South-Eastern Spain and concluded that the regional functions of the AHC 316 

cannot be extrapolated to other regions, even in their vicinity. Moreover, Fig. 2 also 317 

represents the local linear fit for the 30 stations according to the approach of 318 

Vanderlinden et al. (2004) with R2=0.17, a considerably worse fit than found in the 319 



cited studies. Nevertheless, when applied only to coastal stations R2 increased to 0.77. A 320 

similar performance of the Vanderlinden approach was found by Mendicino and 321 

Senatore (2013) in Southern Italy, although with higher coefficients of determination 322 

(0.46 and 0.83 for all stations and for coastal stations, respectively).  323 

The relationship between C of the original Samani equation (Eq. 6) (computed as 324 

observed AHC per station / 0.0135) and ∆T is represented in Fig. 3. It must be noted 325 

that all timescales lead to the same average AHC values per station, in agreement with 326 

Mendicino and Senatore (2013), who obtained very similar AHC values for monthly 327 

and daily ETo estimates (results not shown). The original Samani quadratic equation 328 

(Eq. 6) yielded a poor fit for this study area (R2=0.09), though R2 increased when this 329 

approach was fitted to local data (R2=0.35). Similarly, Mendicino and Senatore (2013) 330 

already reported that the approach of Samani (2000) provided a higher goodness-of-fit 331 

(R2=0.77) than that of Vanderlinden et al. (2004) (R2=0.46), although a lower R2 was 332 

obtained here. Fig. 3 also represents C = AHC / 0.0135, with AHC calculated using the 333 

locally fitted Vanderlinden approach (model 1 in Table 1, as explained below). As 334 

stated by Vanderlinden et al. (2004) and later confirmed by Mendicino and Senatore 335 

(2013), the Samani curve reaches a relative minimum and, hence, assumes an increasing 336 

C for  higher values of ΔT, which was not observed neither in Southern Spain nor in 337 

Southern Italy, and neither in this study. Therefore, also a power function was fitted 338 

(C=0.5352·ΔT -0.4785, R2=0.35) according to Vanderlinden et al. (2004). The coefficients 339 

of determination of the fitted curves are considerably lower than those obtained in the 340 

cited studies. As a result, none of these approaches provided accurate estimates of C and 341 

AHC in this study, as further discussed below, and are therefore not suitable for this 342 

region. 343 

 344 



Alternative methods for estimating AHC 345 

 346 

The  new parametric expressions for AHC based on MLR are presented in Table 1, 347 

grouped into models relying on temperature data (models 1 to 5), temperature data  348 

combined with geographic information (model 6), temperature data combined with 349 

geographic information and wind speed (models 7, 9 and 10), and geographic inputs 350 

combined with wind speed (models 11 to 14). The equations shown in Table 1 (except 351 

model 5) contain only statistically significant variables, selected according to step-wise 352 

multiple regression. 353 

Focusing on temperature-based approaches, models 1 and 5 correspond to the local 354 

versions of the Vanderlinden et al. (2004) and Samani (2000) approaches, respectively. 355 

The latter approach yields a slightly higher goodness-of-fit in this region (R2 of 0.35 vs. 356 

0.17), although the accuracy is very poor in both cases. The quadratic effect 357 

incorporated by Samani (2000) in his model was not statistically significant in this study 358 

(model 2). Finally, if the ratio Tmean / ∆T (Vanderlinden et al., 2004) is split up as two 359 

independent predictors (model 3), a noteworthy increase of the model accuracy was 360 

achieved (R2 of 0.64 vs. 0.17), reducing the RRMSE from 10.7% to 7%. A relevant 361 

quadratic effect was found for this model, which leads to equation 4, with a slight 362 

performance improvement. If geographical inputs are incorporated, which are easily 363 

available for any station, the performance of the temperature-based models increased 364 

(model 6). It was found that only the effect of ∆T, longitude and altitude was 365 

statistically significant. Compared with the optimal temperature-based model (model 4), 366 

R2 increased from 0.71 to 0.90, while RRMSE decreased from 6.2% to 3.7%, and MAE 367 

was reduced from 0.000115 to 0.000070. For the third strategy (models 7-10 in Table 368 

1), in addition, wind inputs were considered. According to the results of Shahidian et al. 369 



(2013), wind speed is the most important parameter for improving the precision of HG 370 

estimates, especially for correcting the bias and calibration slope. By incorporating wind 371 

speed into the original HG equation, in additon to the radiative component, also the 372 

aerodynamic component of the PM equation is taken into account. Accordingly, model 373 

7 provided improved AHC estimates, with R2 = 0.97 and a RRMSE reduction from 374 

3.7% to 1.9% as compared to model 6. Nevertheless, it must be noted that wind speed is 375 

usually not available or reliable at many stations, and this model would not be strictly 376 

applicable when the HG models should be useful in practice. In order to overcome this 377 

drawback, an extra model was fitted for estimating u2 based on temperature and 378 

geographical information (model 8). Taking advantage of model 8, model 7 might be 379 

applied in stations were wind speed is not available. Under these conditions, model 6 380 

(without u2) provided similar accuracy than model 7. Note that in Table 1 the indicators 381 

of model 8 are obtained using model 7 for AHC and model 8 for u2.  382 

Other approaches (models 9 and 10) considered qualitative wind information instead of 383 

measured u2. Stations were grouped according to their average wind speed as high, 384 

intermediate or low windy (model 9), assigning the values 1 for the low, 2 for the 385 

intermediate, and 3 for the highest speed category. Model 10 uses only two wind classes 386 

(high or low), assigning 1 for windy stations and 0 for the others. These classes were 387 

determined considering the u2 variability among the 30 stations. Given the relevance of 388 

wind for HG estimates, users might provide additional information about the local wind 389 

conditions without the need of requiring local experimental measurements. As can be 390 

observed in Table 1, replacing quantitative wind speed data by qualitative information 391 

has only a small effect on the model accuracy, even when taking into account only two 392 

wind classes (model 10). In this case, when comparing with model 6 (thermal and 393 

geographic information), the R2 increased from 0.90 to 0.94 (to 0.97 using three wind 394 



classes), and the RRMSE decreased from 3.7% to 2.8% (to 2% using three classes). 395 

Hence, considering a station as windy or not should be sufficient to apply the model and 396 

to improve the accuracy of the AHC estimates considerably. Considering more than 397 

three wind classes would complicate the application of such models in practice, or even 398 

decrease their performance due to the risk of choosing the wrong wind class. Therefore, 399 

model 10 would be preferable to ensure a proper class selection. Finally, a fourth 400 

strategy was examined by considering jointly geographical and wind inputs (models 11-401 

14). Nevertheless, these models did not improve substantially the performance as 402 

compared with models of category 2 which, besides, can be applied easier. Caution is 403 

warranted when extrapolating the proposed expressions since they rely on a rather short 404 

8-year data set. The main goal was to suggest new alternative procedures for improving 405 

the AHC prediction taking advantage of additional available information when the HG 406 

equation is supposed to be useful in practice, e.g. geographical information and, 407 

eventually, qualitative wind speed information. 408 

 409 

AHCs per station and average HG accuracy at different timescales 410 

 411 

The AHCs per station are compared in Fig. 4. Here, observed AHCs (target values) and 412 

the locally fitted values according to the approaches of Samani (2000) and Vanderlinden 413 

et al. (2004) are shown (models 5 and 1, respectively). Moreover, two of the new 414 

optimal models are represented as well, namely model 6 relying on temperature and 415 

geographic inputs, and model 9, which also incorporates qualitative u1-3 wind speed. 416 

Despite its higher accuracy, model 7 was not considered here, since it requires local 417 

measurements of wind speed, in contrast to models 9 or 10. As stated above, it presents 418 



the drawback of requiring local measurements of u2. The original HG coefficient 0.0023 419 

is also plotted as a reference.  420 

No clear over-/underestimation trend of the observed AHC could be found between 421 

inland and coastal stations. Neither the inland stations nor the coastal stations showed 422 

consistently AHCs over or under 0.0023, in contrast to the results of Vanderlinden et al. 423 

(2004). Despite being located near the sea, the location of some coastal stations might 424 

present particularities, which could justify those AHC values under 0.0023. The 425 

estimates of the new models (red circles) are clearly closer to the observed AHCs than 426 

the existing models (blue squares). Moreover, the differences in AHC between the 427 

different approaches are station-dependent, with small differences (e.g. stations 3, 5, 9 428 

or 22) and large differences (e.g. stations 21 or 27).  429 

The values of the observed AHC ranges were also assessed for the different timescales 430 

(results not shown). For each timescale point (day, week, fortnight, month), an AHC 431 

value was calculated as the quotient between FAO56-PM and HG ETo estimates. As 432 

expected, the AHC variability increased for smaller timescales, i.e. the deviation ranges 433 

between HG and FAO56-PM estimates decreased from daily to monthly timescales. 434 

Although this decreasing variability might be a result of the smaller variability of ETo 435 

for longer timescales, it must be noted that the input variables for the HG and FAO56-436 

PM equations were averaged, but not the ETo values. These differences between 437 

timescales suggest the need for applying different AHC coefficients throughout the 438 

year, and not a single AHC per station. Also Vanderlinden et al. (2004) suggested the 439 

possibility of providing monthly AHCs. 440 

The average performance accuracy of the non-calibrated HG equation for the different 441 

timescales at the 30 stations is shown in Table 2. Also the average performance 442 

indicadors of the calibrated HG equation using the AHC models of Table 1 are 443 



included, in addition to the indicators obtained for the observed AHC (locally fitted 444 

target values). Focusing on the non-calibrated HG estimates, it can be observed that the 445 

error measures decreased when the timescale increases (RRMSE values of 0.223, 0.168, 446 

0.145, and 0.141 for daily, weekly, fortnightly and monthly timescales, respectively). 447 

The increment in accuracy was more significant from daily to weekly than from weekly 448 

to fortnightly timescales (5.5% vs. 2.3%), and higher from weekly to fortnightly than 449 

from fortnightly to monthly timescales (0.4%). These results seem to be in agreement 450 

with Hargreaves and Allen (2003), who found optimal accuracies for five-day or longer 451 

timescales.  452 

The reduction in RRMSE for the calibrated HG estimates (using the observed AHCs) 453 

with respect to the non-calibrated HG estimates was higher for the weekly (from 16.8% 454 

to 13.3%), fortnightly (from 14.5% to 10.4%) and monthly (from 14.1% to 9.5%) 455 

timescales than for the daily (from 22.3% to 19.7%) timescales. ETo estimates using 456 

AHC model 6 (relying on temperature and geographic information) as well as models 7, 457 

9, and 10 (relying additionally on wind information) showed similar accuracies as 458 

compared with the estimates calculated using the observed AHCs. The performance 459 

differences between the AHC models in Table 1 are translated into smaller performance 460 

differences between the corresponding calibrated ETo estimates, because one single 461 

AHC is used for all time points at a given station, and the ETo ranges are larger than the 462 

AHC ranges. Even the locally fitted AHC approaches of Samani (2000) and 463 

Vanderlinden et al. (2004) provide small accuracy improvements. Nevertheless, these 464 

average error parameters should be split up per station to properly assess the differences 465 

between approaches. Finally, all ETo estimations corresponding to the same timescale 466 

presented the same coefficient of determination. Although they were calculated with 467 



different AHC models, a single AHC is applied per station, and the different calibrated 468 

HG alternatives are proportional to the non-calibrated HG. 469 

 470 

HG accuracy per station and average cumulative ETo estimation 471 

 472 

Fig. 5 presents the RRMSE of the calibrated and non-calibrated HG estimations per 473 

station for daily timescales. The same approaches as in Fig. 4 were represented here, 474 

except for model 9, which was replaced by model 10 (two wind classes instead of 475 

three), because the corresponding RRMSE values were very similar and because model 476 

10 can be applied more easily (the probability of selecting correctly the wind class is 477 

higher). The general trend observed in Fig. 5, as expected from the average results, is 478 

that the non-calibrated HG errors were consistently higher than the calibrated HG 479 

errors, and that the new AHC models incorporating geographic and qualitative wind 480 

speed information provided ETo estimates with lower errors than those calculated using 481 

the approaches of Samani (2000) and Vanderlinden et al. (2004). This can be clearly 482 

observed for example at stations 8 and 18. At some stations (e.g. 9, 10, 19, 22), all 483 

approaches presented a very similar performance, including the non-calibrated HG 484 

estimates. In other cases, the new AHC approaches led to ETo estimates with slightly 485 

higher RRMSE than the temperature-based models (e.g. stations 11, 23, 24). Finally, in 486 

other stations (e.g. 24, 28), the non-calibrated HG estimates presented even slighly 487 

lower RRMSE than the calibrated HG estimates, in accordance with the findings of 488 

Mendicino and Senatore (2013) at some of their stations. Again, this might be due to the 489 

consideration of a single AHC value per station, i.e. the same AHC was applied for all 490 

daily HG estimates per station. This is an important simplification, because the daily 491 

actual AHC might fluctuate significantly throughout the year. Therefore, a single 492 



coefficient might not be suitable for correcting the HG estimates throughout the 493 

considered period. 494 

Attending to the intra-annual trend of station 28 (results not shown), although the non-495 

calibrated HG estimations present a lower average error than the calibrated estimates 496 

(Fig. 5), this pattern is month-dependent. Although the calibrated estimates are more 497 

accurate at a larger number of months (september to march), the errors of the calibrated 498 

estimates between April and August were considerably higher than for the rest of the 499 

year. Thus, where the non-calibrated HG equation already provided accurate estimates, 500 

the application of a single AHC might worsen the estimation performance, especially 501 

when ETo increases (summer). Fig. 6 shows the intra-annual patterns of daily and 502 

monthly ETo estimates at Ondara (station 7) and Vila-Joiosa (station 3), according to the 503 

FAO56-PM and HG equations, as well as using the AHC model 10 for the HG 504 

calibrated version. Apart from the over- (Ondara) and underestimation (Vila-Joiosa) 505 

trend of the non-calibrated HG estimates, a further important difference could be 506 

observed with respect to the calibrated HG estimates, especially for the monthly 507 

estimates. While in Ondara (upper plot) the monthly HG estimates presented a rather 508 

homogeneous and constant deviation from the FAO56-PM estimates throughout the 509 

year (except in August), this was not the case in Vila-Joiosa. The calibrated HG 510 

equation presented a tendency to overestimate from February to August, while it 511 

underestimated from September to January. In addition, the deviation from the FAO56-512 

PM estimates was considerably different from month to month, even for months with 513 

similar ETo rates, e.g. November vs February, July vs August, May vs September, etc.). 514 

Thus, while a single AHC per station might provide suitable estimates in station 7 for 515 

the whole year due to a homogeneous annual deviation pattern of the HG estimates, by 516 



contrast, the application of different AHCs throughout the year might be required in 517 

station 3 for a suitable fit of the HG trend.  518 

The assessment of the model performance for estimating annual average cumulative 519 

ETo values is presented in Table 3. The average performance indicators of such 520 

estimates in the 30 stations are presented here for the daily timescale. As can be 521 

observed, the error parameters are considerably lower in comparison to Table 2. This 522 

can be linked to the variability reduction due to the use of averaged values. The 523 

performance parameters were very similar for the different timescales (results not 524 

shown), where the RRMSE fluctuates between 0.11 (non-calibrated HG) and 0.03 525 

(optimum calibrated HG). By averaging the inputs for the weekly, fortnightly and 526 

monthly timescales and applying the HG and FAO56-PM, similar results were obtained 527 

as compared to averaging directly daily ETo estimates for the different timescales 528 

(results not shown). Therefore, a model provided very similar daily accumulated 529 

estimates for the different timescales. Coastal station 1 (Pilar de la Horadada, mean 530 

ΔT=9.2ºC) and inland station 18 (Carcaixent, mean ΔT=13.6ºC) were selected to show 531 

the evolution of the accumulated ETo during an average year based on daily estimates 532 

(Fig. 7). The mean ΔT ranged from 8.8ºC to 14.4ºC among the 30 stations. In this case, 533 

model 6 (relying on temperature and geographic information) was used instead of 534 

models 9 and 10, in order to provide a more conservative comparison, and because it 535 

can be applied with less uncertainty than the AHC models relying additionally on wind 536 

speed class. The estimates derived from using the observed AHC were not shown since 537 

model 6 already provided very accurate estimates, as can be observed in Fig. 7. The 538 

annual FAO56-PM ETo in station 1 was approximately 200 mm higher than in station 539 

18. At station 1, the HG and the temperature-based approaches underestimated ETo, 540 

with a total annual error of -150 mm (HG), -75 mm (Vanderlinden et al., 2004), and -50 541 



mm (Samani, 2000). These errors are noteworthy bearing in mind that the average 542 

annual precipitation at this station is 353 mm. The proposed AHC model provided very 543 

accurate mean cumulative estimates, and eliminated the error almost completely. Station 544 

18, with an average annual precipitation of 583 mm, showed higher and positive errors, 545 

ranging from 280 to 120 mm, corresponding to overestimations by the non-calibrated 546 

and calibrated HG estimates, with the exception of the proposed AHC model. In both 547 

cases, a higher error is accumulated at the end of the year, when actual 548 

evapotranspiration is rather controlled by the available soil moisture and soil physical 549 

properties than by the atmospheric demand (Vanderlinden et al., 2004). Moreover, as 550 

stated by Mendicino and Senatore (2013), the summertime provided the highest 551 

increments in the accumulated error (steeper slopes), because T and ETo are higher 552 

during this period. 553 

Further research should assess the encountered relationships in other climatic and 554 

geographic scenarios. Moreover, the presented conclusions should also be confirmed 555 

using experimental benchmarks, according to Martí et al. (2015). 556 

 557 

4. Conclusions 558 

 559 

This paper evaluates the performance of the calibrated and non-calibrated versions of 560 

the Hargreaves equation in Eastern Spain at daily, weekly, fortnightly and monthly 561 

scales. This study assesses previous parametric calibrations of the AHC coefficient and 562 

provides new procedures to improve their performance accuracy considering additional 563 

available inputs. 564 



The accuracy of the calibrated and non-calibrated HG estimates increased for longer 565 

timescales, with decreasing accuracy improvements. The average accuracy 566 

improvement rate of the calibrated HG estimates is similar for all timescales. 567 

The locally fitted approaches relying, respectively, on average temperature range 568 

(Samani, 2000), and the ratio Tmean/ΔT (Vanderlinden et al. 2004) did not perform 569 

satisfactory in this region at the considered stations.  570 

Three strategies were adopted to improve the performance of the parametric AHC 571 

equations. First, the mentioned ratio was split into two independent inputs, namely 572 

mean temperature and mean temperature range. Second, temperature-based inputs were 573 

combined with additional geographic inputs. Third, temperature-based and geographic 574 

inputs were combined with additional qualitative wind inputs (wind classes). 575 

The most accurate AHC model relied on temperature range, longitude, altitude and three 576 

qualitative wind speed classes (low, intermediate, high). When considering two wind 577 

classes (highly vs. poorly windy) only a slight accuracy decrease was observed. 578 

Nevertheless, the accuracy of the AHC estimates might increase in practice, because 579 

increasing the number of wind classes complicates the application of such models or 580 

might even worsen their performance because of choosing the wrong station class. The 581 

model relying on temperature range, longitude and altitude only involves a slight 582 

accuracy decrease in comparison to models incorporating wind class, while its 583 

application is easier and more reliable. 584 

The differences in accuracy between the AHC models were translated into smaller 585 

differences in the accuracy of the corresponding ETo estimates, because a single AHC is 586 

considered per station. The error parameters decreased when the models were used to 587 

provide average cumulative annual values. Further, the performance parameters were 588 



very similar for the different timescales, because they provided very similar cumulative 589 

values. 590 

The AHC fluctuation throughout the year might recommend the calibration of monthly 591 

or at least seasonal models for estimating AHC. The relationships encountered might 592 

only be valid for the studied locations. However, the new methodological strategies for 593 

improving the local parametric calibration of AHC might also be applied elsewhere, 594 

trying to take advantage of additional inputs which might be available under conditions 595 

where the HG equation might be the only alternative. 596 
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 733 

Figure captions. 734 

 735 

Fig.1. Location of studied stations (c coastal, i inland). Codes as in Figs. 4 and 5. 736 

Fig.2. Relationships between AHC and Tmean/ΔT. 737 

Fig.3. Relationships between C and ∆T.  738 

Fig.4. Comparison of the estimated AHCs per station according to different models in 739 

Table 1. The horizontal line represents the original AHC of 0.0023 740 

Fig.5. RRMSE of calibrated (HGc) and non-calibrated HG estimates per station at daily 741 

timescale, according to different models in Table 1. (-) means unitless 742 

Fig.6. Annual evolution of daily and monthly ETo estimates in two weather stations 743 

according to FAO56-PM, HG and HGc (model 10). 744 

Fig.7. Cumulative mean annual pattern of ETo daily estimates in two weather stations 745 

according to FAO56-PM, HG, and calibrated HG based on model 1 (Vanderlinden et 746 

al., 2004), 5 (Samani, 2000), and 6. The lower plots indicate the deviations with respect 747 

to the FAO56-PM curve.  748 

 749 

Footnote Table 1: 750 

AHC: adjusted Hargreaves coefficient, Tmean: average mean temperature, ΔT: average 751 

daily temperature range, φ: latitude; τ: longitude, z: altitude (m), u2: wind speed at 2 m 752 

height (m/s), u2c: calculated wind speed at 2 m height, u1-3: qualitative wind speed (1 753 

low, 2 medium, 3 high), u0-1: qualitative wind speed (0 low, 1 high), ds: distance to the 754 

sea (km). 755 
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Table captions. 757 



 758 

Table 1. Proposed AHC models and associated statistical parameters 759 

Table 2. Average performance indicators of calibrated and non-calibrated HG estimates 760 

for the different timescales considered. Model codes as in Table 1.  761 

Table 3. Average performance indicators of the mean daily cumulative calibrated and 762 

non-calibrated HG estimates for the daily timescale. 763 
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